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On Oscillating Sphere in a Rotating Viscous Fluid
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Greenbelt, Maryland
The moderate and large-scale motions of the atmosphere are greatly

influenced by the vorticity of the earth's rotation. In the case of an
infinite liquid, rotating as a rigid body about an axis, the amount of
energy possessed by the liquid is infinite and it is of great interest
to know how small disturbances propagate in such a liquid. To understand

some of these phenomena, it will be interesting to study the flow of a

rotating fluid around elementary bodies.

Here we consider small oscillations of a sphere in an incompressible,
viscous fluid rotating with a constant angular velocity. For flow in the
absence of rotation, the problem was first considered by Stokes [Lamb, 19%2]
on the assumption that the Reynolds number Rs = aIVS|/Y was negligibly
small (so as to discard convective terms), where Vs is the velocity
of the sphere, a is the radius of the sphere and Y the kinematic viscosity.
It is the purpose of the present investigation to determine the effect

of the coriolis forces on the flow pattern.

Let the sphere oscillate along the axis of the rotating fluid which
is taken to be the x~-axis. The origin is at the mean position of the center
of the sphere. The equations of motion of an incompressible, viscous,
unbounded liquid rotating about x-axis with a constant angular velocity

Q i referred to a rotating frame of reference are
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+X.vz+2(_1xx+(_}x(9x£)=-%‘Vp+YVZv (1)

e

where p is the density, v the velocity of the fluid, p is the pressure

and r is the radial coordinate:
¥ = y° + 27
The equation of continuity is
divv = 0 . ' (2)

As in the classical problem, the comvective terms in (1) will henceforth

be neglected. This is Justified if

R, = alv |/y < 1 . (3)
s

The equations (1) and (2) will be reduced to a non-dimensional form by

referring the length to a, the radius of the sphere, the velocity to ahA

(A/2m is the frequency of the oscillation), the time to 1/A and the

pressure to p a© A2. Then we have

=-VP+6XX_].__+% V2 v (4)
e
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and

divv = 0 (5)
where

Re(Reynolds number }* = a2\/y 6)
and

§ = 2 Q/y, the inverse of the so-called Rossby number

S @

and the centrifugal force -62Vr2/8 has been absorbed in the pressure term.

The boundary conditions on v are that v = Ugi at the sphere R =1

*It should be noted that we have used al as velocity in the definition
of the Reynolds number. There still is another important dimensionless
parameter a/a, where o is the amplitude of -the oscillatory motion of the
sphere. It is assumed that this quantity is small compared to unity. The

velocity of sphere is VSE =qa A el)\t i, or in dimensionless form:
Ui = a/a el?i. The Reyrnolds number for the flow might have also been

defined as R_ = a o A/Y (=Re @/a). Tt is necessary that R, << 1, whereas
the requiremént for Re is léss severe.



(where R® = r? + x°) and v = O at infinity. (8)

As in non~rotating case, we have here axi-symmetry in that the
physical variables are independent of the azimuthal coordinate¥* &.
However, the azimuthal component of velocity Vs is non-zero here in

contrast to the non-rotating case in which Vs is zero.

We next mske an important assumption in that the Rossby number

RO is large so as to neglect second or higher powers of 8. (9)
From (4) and (5) it follows that Ve = 0(1), v, = 0(1) and Vg = 0(s),
hence
V2 P = 0(62) . (10)

It follows that the coupled equations (4) can be simplified in this case.
In fact, in view of (9) and (10), v, and v satisfy identically the same
system of equations and boundary conditions as in non-rotating case.

The solution is therefore [Lamb, 1932]

p = A&h(%gig). (1)

and

*(r, ®, x) are the cylindrical coordinates.
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v = AiV E;Lﬁggﬁl + 2B £ (hR) V (RP;(cos®)) -

P °]
-Bfs (hR) B2 R°V _J£%§§_l

where (R, ©, &) are the spherical polar coordinates*, and

h® = - iR
e

The function f_ (§), defined as

1 g \B -ig
2.6 = (3% %

essentially represents boundary layer effects, while the constants

A and B are given by
A = -inff(h)B , B = Us/efo(h)

Finally, Vs remains to be determined, which satisfies

- F .13
r
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and the boundary conditiomns

*x =R cos 8, r = R sin ©.

(11)

(12)

(13)

(14)

(15)



vg = Oat R=1eand at infinity. (16)

The solution of (15) and (16) is

3

VQ = -E

6BRexrfl(hR)+56A%§+cxrf2(hR) (17)

Where

c = BBsRe[1+§%21%}%] . (18)

To summarize, the following conclusions are noteworthy:

(i) The azimuthal component of velocity is non-zero in contrast

to non-rotating case in which Ve = 0.

(ii) The rotating effect generates vorticity in that for large
distances, the flow pattern is irrotational in non-rotating case. In
rotating case, the azimuthal component of velocity is responsible for

vorticity for large R.

(iii) The wave-like terms fn(hR) (corresponding to a boundary
layer) appearing in the solution, effective in a small distance from
the surface of the sphere and behaving like exp [-(1+1)A/§e72 (R-1)] are

essentiglly similar in nature in rotating and non-rotating cases.

(iv) The drag on the sphere remains unchanged (due to rotation)

to the order & since Vs vr and p remain unchanged to that order.



In a forthcoming paper, the above discussion will be extended to

& compressible fluid in the presence of a magnetic field.
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